
Experimenting with Time and Depth Control in Chess Engines

by

Guðmundur Páll Kjartansson

Project Report of 30 ECTS credits submitted to the Department of
Computer Science at Reykjavík University in partial fulfillment of the

requirements for the degree of
Master of Science (M.Sc.) in Computer Science

December 2019

Examining Committee:

Yngvi Björnsson, Supervisor
Professor, Reykjavík University, Iceland

Stephan Schiffel, Examiner
Assistant Professor, Reykjavík University, Iceland

Hrafn Loftsson, Examiner
Associate Professor, Reykjavík University, Iceland

Copyright
Guðmundur Páll Kjartansson

December 2019

ii

Experimenting with Time and Depth Control in Chess Engines

Guðmundur Páll Kjartansson

December 2019

Abstract

Chess programming has come a long way since 1996 when Deep Blue defeated world
champion Garry Kasparov. Deep Blue was the result of many years of labor of
knowledge-engineering, where chess-specific features were hand-crafted and carefully
hand-tuned. Recently, AlphaZero received worldwide attention for mastering the
games of chess, Shogi, and Go through machine-learning and self-play using no game-
specific knowledge features (except the rules of the games).

In this project, we examine ways to improve chess playing programs using machine
learning methods. In our first set of experiments, we test whether a neural network
can be trained to determine volatility of chess positions, i.e., whether they are stable
or not, but such information may be used to improve time management. In our second
set of experiments, we use regression methods to automatically determine the value
of the parameters used in a chess engine for depth reduction in search. We use the
world-class program Stockfish for our experiments, and although our experiments did
ultimately not lead to improved play, some hold promise, for example, in classifying
chess positions as volatile or not.

Tilraunir með tíma- og dýptarstjórnun í skákvélum

Guðmundur Páll Kjartansson

desember 2019

Útdráttur

Skákforritun er langt komin síðan árið 1996 þegar Deep Blue sigraði heimsmeistarann
Garry Kasparov. Deep Blue var afrakstur margra ára þekkingarverkfræðilegrar vinnu
þar sem sértækir eiginleikar skákar voru handsmíðaðir og vandlega handstilltir. Nýlega
fékk AlphaZero athygli um allan heim fyrir að hafa náð tökum á skák, Shogi og Go í
gegnum vélanám og sjálfspilun án þess að byggja á sértækum eiginleikum umræddra
leikja (öðrum en reglum leikjanna).

Hér skoðum við leiðir til að bæta skákvélar með því að nota vélnámsaðferðir. Í fyrstu
tilraunum okkar prófum við hvort hægt sé að þjálfa tauganet til að ákvarða óstöðugleika
skákstaða, en slíkar upplýsingar má nota til að bæta tímastjórnun. Í seinni tilraunum
okkar notum við aðhvarfsaðferðir til að ákvarða sjálfkrafa gildi breytanna sem notaðar
eru í skákvél til að draga úr leitardýpt. Við notum heimsklassa skákvélina Stockfish við
tilraunir okkar. Þó að tilraunir okkar hafi á endanum ekki leitt til umbóta í tefldum
skákum þá benda sumar þeirra til annarskonar umbóta, til dæmis í því að flokka
skákstöður sem óstöðugar eða ekki.

iv

Experimenting with Time and Depth Control in Chess Engines

Guðmundur Páll Kjartansson

Project Report of 30 ECTS credits submitted to the Department of
Computer Science

at Reykjavík University in partial fulfillment of
the requirements for the degree of

Master of Science (M.Sc.) in Computer Science

December 2019

Student:

Guðmundur Páll Kjartansson

Examining Committee:

Yngvi Björnsson

Stephan Schiffel

Hrafn Loftsson

vi

The undersigned hereby grants permission to the Reykjavík University Library to
reproduce single copies of this Project Report entitled Experimenting with Time
and Depth Control in Chess Engines and to lend or sell such copies for private,
scholarly or scientific research purposes only.
The author reserves all other publication and other rights in association with the copy-
right in the Project Report, and except as herein before provided, neither the Project
Report nor any substantial portion thereof may be printed or otherwise reproduced in
any material form whatsoever without the author’s prior written permission.

date

Guðmundur Páll Kjartansson
Master of Science

viii

I dedicate this project to my parents.

x

Acknowledgements

This work was funded by 2014 RANNIS grant “Hermi- og brjóstvitstrjáleit í alhliða
leikjaspilun og öðrum flóknum ákvörðunarvandamálum."

Contents

Acknowledgements xi

Contents xii

List of Figures xiv

List of Tables xvi

List of Abbreviations xvii

1 Introduction 1
1 Introduction . 1

2 Background 3
1 Chess Engines . 3

1.1 Chess State . 3
1.2 Evaluation Function . 4
1.3 Game Tree . 5
1.4 Tree Search . 5
1.5 Search Window . 5
1.6 Quiescence Search . 6
1.7 Search Depth Reduction . 7

2 FishTest . 7
3 Deep Neural Network . 8

I Time Management 11

3 Methods 13
1 Deep Neural Clock . 13
2 Neural Network Architectures . 14
3 Training and Testing the Networks . 16
4 Evaluating the Networks . 17

4 Results 19
1 Experimental Setup . 19
2 The Dense Network Architecture . 19
3 The Convolutional Network Architecture 21
4 Comparing the Architectures . 22
5 Distinguising Stable vs. Nonstable Positions 23

xii

6 Testing in Gameplay . 24
7 Summary . 25

II Depth Reduction 27

5 Methods 29
1 Late-Move-Reductions in Stockfish . 29
2 Gathering and Labelling the Data . 31
3 Regression and Normalizing . 32
4 Matches against the original Stockfish 33

6 Results 35
1 Gathering and Labelling the Data . 35
2 Regression and Normalizing . 35
3 Match Results . 38
4 Other Experiments . 38

4.1 Hand-Picked Parameters . 38
4.2 Grid Search . 39
4.3 Non-linear Modifications . 39

5 Summary . 40

III Conclusion and Future Work 41

7 Conclusions and Future Work 43

Bibliography 45

A Code 47
1 Logging code . 47

1.1 Opening positions . 47
1.2 Logger . 48

2 Labelling code . 50
3 Stockfish modifications . 53

3.1 First version . 53
3.2 Second version . 54

List of Figures

2.1 An example of a chess position. 3
2.2 Search tree of Tic-Tac-Toe, as an example. Note that there should be 9

edges from the first depth (depth 0) to the next, and then 8 edges and so
on, but some edges were removed because of symmetry (I.e. if X plays in
the center, O can reply by either playing in a corner or an edge, and all
those positions are rotationally symmetric). Image source: [7] 6

2.3 Here the triangle represents a search tree, where the height corresponds to
a given search depth and width corresponds to the ordered move number.
The black line shows how the search depth is reduced by the formula used
by Stockfish. Notice that the first 2-3 moves are always searched at full
depth. This is because the moves are ordered in such a way that the first
few moves in the list are the ones that seem most promising and thus are
searched at full depth. 8

2.4 One neuron in a neural network . 9
2.5 A 3× 3 filter is propagated through the input which has shape 12× 12. . 10

3.1 A simple full-forward architecture, where each layer is fully connected to
the next. The board encoding is bundled together with castling and other
parameters in the same input layer. 15

3.2 In the above architecture, the chess board goes through a series of convo-
lutional layers, while other parameters go through dense layers. The result
is then combined and goes through another series of dense layers. 16

3.3 For preprocessing, we create a separate 0-1 matrix for each type of piece
for each color, where 1 or 0 indicates the presense or absense of that piece
in a given position on the board. 17

4.1 Accuracy on the training data vs validation accuracy from tuning the num-
ber of neurons, while keeping layers fixed at 2 and β = 18.0. In the top
graphs we use dropout layers set at 0.5 for regularization and in the bottom
graphs we have no such regularization. 20

4.2 Accuracy on the training data vs validation accuracy from tuning the num-
ber of layers, while keeping neurons fixed at 50 and β = 18.0. 20

4.3 Accuracy on the training data vs validation accuracy from tuning the beta
parameter, while keeping neurons fixed at 50 and layers fixed at 2. 21

4.4 Accuracy on the training data vs validation accuracy from tuning the num-
ber of neurons, while keeping layers fixed at 2 and β = 18.0. 21

4.5 Accuracy on the training data vs validation accuracy from tuning the num-
ber of layers, while keeping neurons fixed at 100 and β = 18.0. 22

xiv

4.6 Accuracy on the training data vs validation accuracy from tuning the β
parameter, while keeping neurons fixed at 100 and layers fixed at 2. 22

4.7 On the left side we have a Cumulative Gains curve, which shows how well
our model does at signifying correctly that Stockfish should stop searching.
The blue line shows an ideal model which always outputs correctly and the
baseline shows how well a random model would do on average. Our model
is on the orange line and clearly has a significant advantage over a random
output. On the right side we have the ROC curve, which plots the false
positive rate against the true positive rate. Our area under the curve is
0.71, while an ideal area would be 1.0. 24

5.1 Visual map of depth reduction using equation 5.1. 31

6.1 The difference in number of nodes searched between Stockfish using the
modified equation and the original Stockfish is shown on the y-axis. The
scale factor used on the equation found through regression is on the x-axis.
The smaller the scaling factor, the lesser the reduction parameter will be
and thus Stockfish will search through a greater amount of nodes. 37

6.2 Visual map of depth reduction using the new equation. 38
6.3 Visual map of depth reduction using equation 6.3 40

List of Tables

4.1 Table data for the ROC curve for stability, sorted by FPR. 24

5.1 The upper limit of allowable reduction in search depth is 11−3 = 8, because
the search outcome does not change from depth 3 to depth 11. 32

6.1 Regression attempts using different terms in the equation. Note that some
of the R2 scores are negative, implying that the formula found through
regression is a worse fit through the data than a horizontal line. 36

xvi

List of Abbreviations

FEN Forsyth–Edwards Notation
PGN Portable Game Notation
UCI Universal Chess Interface
CP Centipawn
LMR Late Move-Reduction
ROC Receiver operating characteristic
FPR False Positive Rate
TPR True Positive Rate

xviii

Chapter 1

Introduction

1 Introduction

Chess programming has come a long way since February 10th 1996. On that fateful
day, the chess engine Deep Blue defeated then world chess champion Garry Kasparov.
Since then, chess engines have continued to improve well beyond human capability.
Those early engines relied heavily on hand-optimized and fine-tuned features for eval-
uation and search optimization. This is still the case for most chess engines today,
including the contemporary open source engine Stockfish [1], which has dominated
most computer chess tournaments in recent years.

In the last few years, neural network assisted chess engines have been making an
appearance. This is a significant shift in methodology, relying on self-optimization
through deep learning, rather than on hand-optimized features and heuristics. Early
attempts include the engines Deep Chess developed at Tel Aviv University [2] and
Giraffe developed by Matthew Lai [3], which both managed to achieve grandmaster-
level performance, but not coming close to the capabilities of the best hand-optimized
engines.

AlphaZero, a computer program developed by the artificial intelligence company
DeepMind, recently received worldwide attention for mastering the games of chess,
Shogi, and Go [4] through self-play alone. The program achieved a super-human level
of play within 24 hours of learning, as was demonstrated by the program defeating the
top computer programs for each game, which were already better than the strongest
humans. The AlphaZero program did effectively learn, using deep neural networks,
how to evaluate game positions for those games, as well as to explore the different
variations of play effectively and intelligently.

In chess, within four hours of self-play (using massive computing resources), it was
able to defeat the previously strongest chess engine, Stockfish [1], somewhat convinc-
ingly in a match. However, there was some criticism on the experimental setup of that
match, for example, as seen from the following quote by the main author of Stockfish:

The match results by themselves are not particularly meaningful because of
the rather strange choice of time controls and Stockfish parameter settings:
The games were played at a fixed time of 1 minute/move, which means that
Stockfish has no use of its time management heuristics (lot of effort has
been put into making Stockfish identify critical points in the game and
decide when to spend some extra time on a move; at a fixed time per
move, the strength will suffer significantly). [5]

2 CHAPTER 1. INTRODUCTION

An important aspect of chess, both for humans and computers, is to be able to
manage time well, that is, in which positions should one invest time to analyze deeply
and in which not. This was, however, not learned by AlphaZero. There has so far
been somewhat limited attention placed on this aspect of computer chess.

In the first part of the project, we do some preliminary work on automatically learn-
ing time-management in chess using neural networks, using Stockfish as our testbed.
In the second part of the project, we slightly change course, and automatically learn
search-reduction parameters used by the search process in Stockfish.

Both the abovementioned learning tasks were done in supervised learning settings,
that is, we first collected and labeled data that was used as the ground truth. On
both tasks, our methods showed a clear ability to learn patterns from the dataset,
although ultimately they failed to improve upon Stockfish play. This is maybe not too
unsurprising given that Stockfish play is already carefully fine-tuned.

The project is structured as follows. In the following chapter, we provide the
necessary background. This is followed by part one, which explores time-management,
consisting of two chapters on methods and results, respectively. Part two, on search-
depth reductions, which follows, is built up in the same way. Finally, we conclude and
discuss future work.

Chapter 2

Background

In this chapter we introduce the terminology used throughout the project and discuss
necessary background work.

1 Chess Engines

We used the open-source chess engine Stockfish in our work, but it is one of the
strongest chess engines in the world [1]. We use version 8, which was the latest stable
release when this work started (as well as the version that AlphaZero played). There
are two main components to all such engines: the search, or thinking ahead, component
and the position-evaluation component, which is used to statically evaluate the merits
of different chess positions. Stockfish uses a traditional depth-first alpha-beta-based
game-tree search for thinking ahead, but enhanced with many advanced techniques for
being able to expand the search tree more selectively. For evaluating chess positions it
uses a highly tuned hand-crafted evaluation function. We now introduce some common
chess program terminology.

1.1 Chess State

A given chess state is a position on the board that can be reached after a sequence of
legal moves. Each square on the board is either empty or contains one of 6 different

Figure 2.1: An example of a chess position.

4 CHAPTER 2. BACKGROUND

types of pieces belonging to one of two players, black or white. The state contains the
aforementioned board, along with the following additional information:

1. Which player, black or white, should make the next move

2. Castling rights for each player, signifying whether or not it is still legal for them
to castle on the king and/or queen side.

3. An en-passant move, if such a move is currently available (implying that in the
last state, a player moved a pawn two squares forward)

4. The number of moves made since a pawn was moved by either player (if neither
player has moved a pawn for 50 moves, the game concludes in a draw)

5. How often the current board position has occured before (threefold-repetition
concludes the game in a draw)

The chess state is often encoded in string format using the Forsyth–Edwards No-
tation FEN. For example, the position in Figure 2.1 would be written as:

r4rk1/2p1q1b1/pp2pn1p/5Np1/3P1P2/2P3P1/PP1NQ1P1/2KR3R b - -

Here, rows are seperated by the / character. Letters represent pieces, where lower
and uppercase represent black and white pieces, respectively. Numbers represent a
sequence of empty squares. As an example, ’r4rk1’ means: a black rook, followed by
4 empty squares, followed by a black rook and a black knight, and finally an empty
square (all in one row).

For listing the game history, as opposed to a single chess position, the Portable
Game Notation PGN is the de-facto standard. It shows the sequence of moves from
the starting position leading to a given chess state. This notation is preferred when
recording entire games, while FEN is prefered for recording a chess state regardless of
the sequence of moves leading up to it. The PGN for Figure 2.1 is given below (often
there is also meta-data about players, tournament and result in the header, but we
omit it here):

1.d4 Nf6 2.Nf3 e6 3.Bg5 h6 4.Bh4 d6 5.c3 g5 6.Bg3 Nh5 7.e4 Bg7 8.Bd3 Nd7
9.Nbd2 b6 10.Qe2 Bb7 11.Nc4 Qe7 12.Nfd2 Nxg3 13.hxg3 a6 14.f4 d5 15.exd5 Bxd5
16.Ne3 Bb7 17.Be4 Bxe4 18.Nxe4 f5 19.Nd2 Nf6 20.O-O-O O-O 21.Nxf5

1.2 Evaluation Function

The evaluation function is defined as V : S → R, where S is the state space and R is
the set of real numbers. The evaluation function will assign a number to each state,
determining how desireable the state would be for the current player if it would be
reached. Ideally, the state assigned the highest value is the one associated with the
highest probability of winning. The value of a chess state is usually measured in a unit
called the centipawn, or one-hundreth of the value of a pawn. Note that the value
does not only depend on material advantage (such as having captured more pawns
than the opponent), but also on the positioning of the pieces.

1. CHESS ENGINES 5

1.3 Game Tree

The game tree is an organized collection of all accessible chess states. The root node
is the current chess state and the other nodes are states reachable from the current
state by some sequence of legal moves. Each edge therefore represents a legal move
from a given chess state. An example game tree for the game of Tic-Tac-Toe is shown
in Figure 2.2.

1.4 Tree Search

A tree search is a search through the game tree, looking for the best available move for
the current player. The best known example is the alpha-beta tree search [6], which
is a depth-first algorithm which keeps track of the upper and lower bounds on the
evaluation function, cutting away branches of the tree which will provably never be
reached if the opponent plays optimally. The lower bound is referred to as alpha, or α,
and the upper bound is referred to as beta, or β. Chess enginges, including Stockfish,
almost universally use a method called iterative deepening, where they search the
current game state progressively deeper in each iteration, e.g., first to depth 1, then
depth 2, etc., until the allotted time is up. This has two benefits, first for easier time
management, but secondly, and more surprisingly, it turns out it is more effective to
search the game tree iteratively from 1 to a given depth d, than directly to depth d.
The reason behind this is that information gathered during previous iterations can be
used to improve the move-ordering in subsequent iteration, resulting in additional α/β
cutoffs and consequently smaller search trees. Algorithm 1 shows a basic iterative-
deepening routine using time management.

Algorithm 1: Iterative deepening
Input : chessPosition

1 depth = 1;
2 while depth < MAX_DEPTH do
3 bestMove = alphaBetaSearchDepthLimited(chessPosition, depth) ;
4 if not enough time left then
5 return bestMove;
6 end
7 depth = depth + 1 ;
8 end
9 return bestMove

1.5 Search Window

The lower bound (known as alpha, or α) and the upper bounds (known as beta, or β)
in alpha-beta search is often referred to as its search window. A search with a certain
window size can either fall within a given window or fail low or high. A position with
value V fails low if V <= α, signifying that the given position will never be reached
because it is too uninteresting, we can reach a stronger position by choosing a different
move further up in the tree. The opposite case when V >= β is called failing high
and means we have reached a position which is better than we can hope for, since

6 CHAPTER 2. BACKGROUND

Figure 2.2: Search tree of Tic-Tac-Toe, as an example. Note that there should be
9 edges from the first depth (depth 0) to the next, and then 8 edges and so on, but
some edges were removed because of symmetry (I.e. if X plays in the center, O can
reply by either playing in a corner or an edge, and all those positions are rotationally
symmetric). Image source: [7]

our opponent could have prevented it by playing a different move (provided that he is
playing optimally).

If a node falls within a given search window, it is referred to as a Principal Variation
node (or PV-node). If a node contains a beta-cutoff (which occurs when failing-high),
it is refered to as a Cut-Off node or a Fail-High node. Otherwise it is known as a Fail-
Low node. Advanced variants of alpha-beta search, such as Negascout [8] and Principal
Variation Search (PVS) [9], first employ a null window search, where α = β− 1, on
all nodes other than the principal variation, and only if that search fails high we search
the node again with a full alpha-beta window. In simpler terms, we do a null window
search with the assumption that the move we are considering is not stronger than the
current principal variation (in other words we assume that the score is ≤ α), if we
get a score > α then we potentially found a move which is actually stronger than the
principal variation and we want to verify that by doing a search with a full window.
Given a good move ordering, this typically results in smaller search trees. Stockfish
uses this approach.

1.6 Quiescence Search

After reaching a terminal node in the regular tree search, the merit of the corresponding
chess position is assessed by calling the evluation function. However, it is sometimes
the case that the terminal position is in a volatile state that cannot be evaluated
accurately statically. Say, for instance that a piece was captured in the last move and
the opponent can capture immediately, but then it might be sensible to continue the
tree-search for a little longer until one has have resolved all sensible recaptures. The
same can be said for positions where the king is in check. If we do not play out those

2. FISHTEST 7

moves, we could potentially have the wrong associated score for the current position
(i.e. a player might seem like he has a material advantage when that really is not the
case). This procedure of doing a limited search expanding only promising captures
and checks until the position looks stable is called quiescence search.

1.7 Search Depth Reduction

Given a chess position, generating all the legal moves is computationally easy. However,
searching a move to a large depth is computationally heavy. Thus it is advisable to
order the moves in some way so that the most promising looking ones are evaluated
first. What Stockfish does is to give each move a score based on the positioning of the
pieces and whether the move is a capture or evasion. The moves are sorted based on
this score and the most promising ones are searched through first.

In order to save computation time, we want to reduce the search depth for less
interesting moves in a given position. Given a seemingly uninteresting move and a
depth reduction value r < d (where d is the full search depth), we can employ a null-
window search at depth d − r with bounds −(α + 1) and −α. Since −α is an upper
bound for our opponents score, we are assuming this reduced depth search to fail low.
If this assumption fails and the reduced search fails high, we should reconsider the
depth reduction and do a full-depth search. This procedure is often referred to as Late
Move-Reduction (LMR) and is the implementation of search depth pruning used by
Stockfish. It is worth noting that unlike alpha-beta pruning, this is speculative pruning
that does not guarantee that the best move is preserved. However, the underlying
premise is that the time saved by searching unpromising branches more shallowly, is
better used instead to reach an overall deeper iteration-depth. Stockfish currently uses
the following formula for calculating the depth reduction term r:

r =

⌊
1

1.95
log(d) log(m)

⌋
(2.1)

In the above formula, d means search depth and m ∈ [0, 1...] means move number.
r is how much the search depth should be pruned. The relation between the inputs
and depth reduction can be seen in Figure 2.3.

It is apparent that Equation 2.1 gives equal weight to the depth and move number
parameters. We will investigate whether this seems like the correct decision to make.
We also want to investigate the correlation between reduction depth and other state
variables, such as the α number from the search tree and the difference in material
value. This experiment and its results are presented in part II of the project.

It is worth mentioning that Stockfish uses serveral other speculative pruning meth-
ods in addition to late-move reductions, but they fall outside the scope of our work.

2 FishTest
Stockfish has an automated way of testing whether modifications to its source code
improve the playing stength of the program, and should thus be merged into the main
branch of the open source program. This testing framwork is called FishTest. It
uses volunteer driven distributed computing to run a tournament between the most
current version of Stockfish and a version with the proposed modifications. Submitters
are advised to make their changes as small and compact as possible and to test each

8 CHAPTER 2. BACKGROUND

Move Number →

←
D
ep
th

Figure 2.3: Here the triangle represents a search tree, where the height corresponds to
a given search depth and width corresponds to the ordered move number. The black
line shows how the search depth is reduced by the formula used by Stockfish. Notice
that the first 2-3 moves are always searched at full depth. This is because the moves
are ordered in such a way that the first few moves in the list are the ones that seem
most promising and thus are searched at full depth.

idea separately before combining them. FishTest uses a Sequential Probability Ratio
Test (SPRT) as a stop condition for evaluating the strength of a modification. The
SPRT will have the null-hypothesis that the engines are equal in strength and the
alternative hypothesis that one of the engines is stronger. The test terminates when
the probability that either hypothesis is correct reaches a certain threshold. The test
has two stages, the fast and the slow stage. Each proposed modification to Stockfish
must first pass through the fast stage and then through the slow stage.

3 Deep Neural Network

A deep neural network is a machine-learning method for approximating some function
f∗ : X → Y . In the context of classification, the function f∗ might map each x ∈ X
to some category y ∈ Y . In the context of tree search, f∗ might be the evaluation
function, and then X would be the set of possible states and Y the set of real num-
bers. The neural network defines a new mapping f(x; θ), where θ is a collection of
parameters tuned by the network in order to find the best approximation of f∗. From
the universal approximation theorem, we know that all bounded continuous functions
can be approximated by an artifical neural network with enough neurons [10].

A deep neural network consists of one or more input layers, and two or more layers
of neurons. The layers are connected in a sequence, though they might split or merge.
Each neuron in a layer takes the outputs from the neurons in the previous layer,
usually along with an extra bias neuron which always outputs 1, as an input vector
x = [x0, x1..xn, 1] and computes their weighted sum w ·x, where w = [w0, w1, ..wn, wb]
is a vector of weights which is then fed through the activation function h of the neuron
to produce an output:

y = h(w · x)

3. DEEP NEURAL NETWORK 9

Figure 2.4: One neuron in a neural network

See Figure 2.4 for a clearer demonstration.
Backpropagation is almost universally used for updating the weights in neural

networks. It works by first calculating the gradient of the error function for the output
of the neural network and then working backwards by recursively using the chain rule
of calculus to find the gradient for each neuron in the previous layers with respect to
the parameters involved in the activation function of each of those neurons. The result
is a cumulative gradient for the whole neural network. A backpropagation algorithm
will take one step in the negative direction of the gradient, in hope of reaching a
local minimum. The global minimum of this gradient is the optimal configuration of
the network given the training data processed. In most cases, there will be multiple
local minima and generally there is no way of knowing if one has reached the global
minimum or not. For solving this, multiple optimization methods have been introduced
that build on top of the basic idea of backpropagation. Those will be discussed later
in this section.

There are a few types of layers that we will discuss. The simplest is the dense
layer, where each neuron connects to all the neurons in the previous layer. We will
use dense layers with h = max(0, x) as an activation function. These types of neurons
are known as Rectified Linear Units (ReLUs). A variant is the Leaky-ReLU with
activation h = max(a, x), where a is some small negative number. Leaky-ReLUs
are sometimes preferred since the gradient is still affected by the presense of negative
values, reducing the risk of introducing dead neurons which will never be updated in
the backpropagation process.

Another type is a convolutional layer. This kind of a layer uses filters of a fixed
size and dimension, e.g. N × N in the case of 2D or N × N × N in the case of 3D.
Each filter has a number of weights equal to its size and the neurons are connected in
such a way that works like a filter sweeping through the layers in the input neurons, as
seen in Figure 2.5. Convolutional layers work very well for dimensionally constructed
data, such as finding features in pictures or in game states. Convolutional layers are
inspired by research on the behaviour of the visual cortex in the brain.

Overfitting can be problematic in training neural networks. Overfitting is when
the network adapts well to the training data, but does poorly on the testing and
validation data, implying that the network memorized the training data rather than
learning some generic features of it. Regularization methods are used to lessen the
danger of overfitting. They also tend to speed up the training process, that is, become
more accurate earlier.

Dropout layers are a common choice for regularizing dense layers in neural networks.
The dropout layer randomly turns off neurons in the previous layer during training with

10 CHAPTER 2. BACKGROUND

Figure 2.5: A 3× 3 filter is propagated through the input which has shape 12× 12.

some probability p, often set to 0.5 for hidden layers and 0.8 for input layers. After
training, the outputs of the neurons are multiplied by the probability p, resulting
in a geometric mean over an exponentially larger set of networks [11]. The idea of
dropout layers is inspired by the concept of ensembles of machine learning models,
where the weighted average of multiple machine learning models is used as the output
of a combined ensemble of models and the learned weights are adapted based on the
performance of each of these models.

Convolutional layers often use either max or average pooling or batch normaliza-
tion. Max and average pooling work by splitting the input into fixed rectangular chunks
and either choosing the maximum or average element from those chunks as output,
reducing the number of output values. Batch normalization uses mini-batches from
the training data to normalize the mean and variance of the output x of the previous
layer to a new output x̂. The batch normalization then produces a rescaled output
ŷ = γx̂+ β. The parameters γ and β are learned during training. This normalization
method often results in a much faster training process than without it [12].

Numerous methods exist for optimizing the objective function in neural networks,
but we will mainly focus on two of the most popular ones, which are Stochastic-
Gradient-Descent (SGD) and Adam. SGD is a method similar to gradient descent,
except that the training data is sampled in random batches and the gradient is updated
after each batch, instead of using the training data in the same order as it appears in
the data set. There exist several optimization methods which build on top of SGD,
one of which is using momentum inspired by physics which increases the learning rate
when the gradient is approaching a minimum and decreases the learning rate when
it is approaching a maximum (similarly to a ball rolling up or down a hill). Another
method is RMSProp, which divides the learning rate by the average of the gradients
used previously to update it. Finally, the optimizer Adam is often regarded as the gold
standard of neural network optimizers. It is similar to RMSprop, except it uses both
the average of the gradient and the average of the second moment of the gradient to
scale the learning rate. The outcome is a nice tradeoff between the momentum and
RMSprop methods.

11

Part I

Time Management

Chapter 3

Methods

Time management, the decision of how much time to spend deliberating on each move,
is an important concept for both humans and computers when playing chess. Typically
a fixed time is provided for the entire game, sometimes with minor time increments
on each move, and the players then need to allot that time wisely throughout the
game. Often opening moves are played rapidly, as well as obvious move replies (like
recaptures) whereas complex middle- and endgame positions might require extra long
time to evaluate and analyze adequately.

In this chapter, we experiment with automatically learning time-management for
a computer chess-playing agent. In real-life settings, this may be a quite intricate
problem (for humans) where many things must be taken into consideration, e.g. one’s
familiarity with the type of opening or middle game, as well as knowing something
about the playing style of the opponent (e.g., some tend to be good in tactical positions
where one needs to be extra careful, that is, think longer, before embarking in a tactical
fight). Here, however, for research purposes, we use a much-simplified setup. The
research question we pose is: Can we after a fixed iteration-depth, based on the current
board-state and limited search history alone, train a neural network-based classifier to
determine if one needs to continue to explore the position more deeply?

1 Deep Neural Clock

The time-management in chess programs is typically done in the iterative-deepening
search procedure. One typical strategy is to estimate the number of remaining moves,
say 40, and then divide the remaining time by that number. Then, the iterative
deepening search proceeds until that time is up. However, before deciding to stop
the search and return the best move, one looks at how stable the evaluation of the
position has been in previous iterations, and if it has been fluctuating a lot — indicat-
ing that this may be difficult position to evaluate accurately — one might decide to
invest in searching it slightly deeper. We use a somewhat simplified model of a time-
management where we use a fixed maximum iteration-depth instead of elapsed time.
The reasons for this choice were both to have a more manageable research environment
and to ensure the reproducibilty of our empirical results.

Our time-management iterative-deepening procedure is shown in Algorithm 2. It
takes three arguments: the current chess position, the maximum iteration depth to
search to, and a threshold. The threshold is a predefined parameter we use to interpret
the output of our neural network classifier. The output of our neural network (function

14 CHAPTER 3. METHODS

NN_PREDICT in line 8) is a real value in the range 0.0 to 1.0, the higher the value
the more stable the neural network judges the position to be. If the value exceeds
the threshold we judge the position to be stable. Stable positions are searched to a
one less iteration depth than we would do otherwise as we do not expect the value
(or best move) of such positions to change much from one iteration to next (lines 5–
11). The inputs into our neural network classifier (NN_PREDICT) are the current
chess position, and two iteration-based variables: delta_value telling how much the
evaluation of the chess position changed between the last two iterations, and pv_move,
a binary variable telling whether the best move (first move on the principal variation)
changed between the last two iterations. The routine search (line 4) is the chess-
program’s main search routine, returning the best move and the score of the current
position based on playing that move.

Algorithm 2: Iterative Deepening with max iteration management
Input : chessPosition, max_iteration_depth, threshold
Output: bestMove

1 prev_iteration_value = 0
2 depth = 1
3 while depth <= max_iteration_depth do
4 (move,value) = search(chessPosition, depth)
5 if depth == max_iteration_depth - 1 then
6 delta_value = value - prev_iteration_value
7 pv_changed = move != pre_move
8 stable = NN_PREDICT(chessPosition, delta_value, pv_move)
9 if stable > threshold then

10 return move
11 end
12 end
13 prev_iteration_value = value prev_move = move
14 depth = depth + 1
15 end
16 return move

2 Neural Network Architectures

Using the Keras library [13], we implemented two different feed-forward (non-cyclic)
neural network architectures for predicting how stable a chess position is. They both
take as an input: the given chess position (the board position and castling rights),
whether the best move changed between the two previous iterations, and how much
the evaluation of the position (in centi-pawns, CP) changed between the same two
iterations. The board position is represented differently in the two architectures. The
ouput of both networks is a real number in the range 0.0 to 1.0 measuring the perceived
stability of the position – the higher the value the more stable the neural network judges
the position to be.

The first network architecture is a traditional feed-forward neural network with
several dense layers, that is, each layer is fully connected to the next. The board is

2. NEURAL NETWORK ARCHITECTURES 15

Figure 3.1: A simple full-forward architecture, where each layer is fully connected to
the next. The board encoding is bundled together with castling and other parameters
in the same input layer.

represented using an one-hot encoding, which results in 12×64 = 768 binary variables
where each variable tells whether there is a given piece type (12 types, 6 of each
color) on each of the 64 squares on the chess board. The other input parameters,
castling righs, pv changed, and delta value, are encoded as 4 binary values (one
for each possible castling), a binary variable, and a real variable, respectively. This
architecture is depicted in Figure 3.1.

The second network architecture is a convolutional neural network. The board is
encoded as a 12 × 8 × 8 tensor, where each 8 × 8 matrix encodes the presence on
the board for each of the 6 chess pieces of each color. A value of 1 indicates the
presence of a piece of the respective type and color and 0 represents the absence of
such a piece. The remaining parameters are encoded the same way as in the previous
architecture. We then feed the board into a series of convolutional layers, whereas the
other input parameters are fed into dense layers. The different sub-networks are then
concatenated, before being fed through final dense layers. This architecture is depicted
in Figure 3.2

For determining the various architectural parameter for the networks, such as the
number of layers and neurons, we did a hyper-parameter search as follows:

• Use dropout layers for regularization or not. For dense layers we used a dropout
layer of 50%, as this is the recomended amount by the original paper on dropout
layers by Hinton [11]. For the convolutional layers we use batch normalization,
as was used in the AlphaZero architecture [14].

• Number of repeated layers. We tried 1-3 repetitions of dense and convolutional
layers.

16 CHAPTER 3. METHODS

Figure 3.2: In the above architecture, the chess board goes through a series of con-
volutional layers, while other parameters go through dense layers. The result is then
combined and goes through another series of dense layers.

• Number of neurons. We tried 50-300 neurons in dense layers and 50-100 in
convolutional layers, with an increase of 50 each time.

Another parameter that was empirically determined was the threshold parameter
(see Algorithm 2) used for interpreting the output of the network. The output is in the
range 0.0 to 1.0, with higher values indicating more stable positions. However, when
using the networks in the chess program we must take a binary decision as whether
the position is stable enough for us to prematurely stop searching. The most simple
approach would be to intepret values exceeding the threshold 0.5 as stable and the
others as unstable, however, this is not necessarily the best approach. Instead we use
a ROC curve for deciding the most approprite threshold. A ROC curve is a way of
computing the true positive rate and false positive rate of a classifier as a function of the
threshold. We report on the result of this and the above-mentioned hyper-parameter
search in the result chapter that follows.

3 Training and Testing the Networks
We generated the data for training and testing the networks as follows. We got online
chess games from tournaments in a PGN format. These were two files standard.pgn
(7,667 games) [15] and carlsen.pgn (1,213 games) [16]. Each position in each game
was then converted to a FEN format using the python-chess library [17], resulting in
total 654,555 positions.

We used the python-chess library [17] for writing a Python script to find the eval-
uation and best move for each of the positions for iteration depths 5, 6, and 7. This
was done by calling the Stockfish chess program through the Universal Chess Interface
(UCI). This information is used to label each chess position as stable or not. Formally,
we define stability as:

stability(S, β, d) =

{
1 |Vd(S)− Vd−1(S)| < β

0 otherwise
(3.1)

4. EVALUATING THE NETWORKS 17

where Vd(·) is the evaluation of position (state) S based on an iteration depth d. We
label the target value in the data according to stability(S, β, 7), meaning that if the
CP value between depths 6 and 7 changes by an amount less than the parameter β,
we consider the position to be stable but otherwise not. The difference between the
CP value of depths 5 and 6 is taken as an input into the neural network.

The Python script also records all the input parameters in the right format, that
is whether the best move changed between iteration 5 and 6, how much the state
evaluation changed between the two iteration, and encodes the board in the right
format for each network. Figure 3.3 gives details about how the chess board is encoded
as a (12× 8× 8) tensor, where each 8× 8 matrix represents the board for each of the
6 chess pieces of each color. Also, we encode all positions from white’s perspective,
that is, if black is to move in a given position, the position is mapped as if the board
is rotated and the color of the pieces (and castling rights) switched. We verified that
the preprocessing works as intended by changing FEN positions into tensors and then
back into FENs.

Matrix for black pawns
0. 0. 0. 0. 0. 0. 0. 0.
1. 1. 0. 0. 0. 1. 1. 1.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 1. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.


Matrix for white pawns


0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
1. 0. 0. 0. 0. 0. 0. 0.
0. 1. 1. 0. 0. 1. 1. 1.
0. 0. 0. 0. 0. 0. 0. 0.


Figure 3.3: For preprocessing, we create a separate 0-1 matrix for each type of piece
for each color, where 1 or 0 indicates the presense or absense of that piece in a given
position on the board.

4 Evaluating the Networks
We use three methods for evaluating the effectiveness of our neural networks. First, the
prediction accuracy on our test data (the data was split into a training and a testing
set containing 80% and 20% of the records, respectively). Second, we use Cumulative
Gains and ROC curves to verify how good the networks are at discriminating between
stable and unstable positions. Finally, we match different versions of Stockfish against
each other, where the baseline version always searches to a fixed iteration depth d
and the other selectively stop at either depth d− 1 or d based on the predicted state
stability. In the following chapter we report on those and other experiments.

18

Chapter 4

Results

1 Experimental Setup

The network architectures were implemented in Keras [13] using Tensorflow [18] as
a backend. We used Tensorboard, a logging and visualization tool in Tensorflow, to
retrieve csv-files with the data presented in the graphs below. The hyper-parameter
search for determining the most suitable architectural parameters was done on the
node-cluster Garpur [19]. All competitions between different versions of Stockfish
were done on a single computer with a 2,5 GHz Intel Core i7 processor and 16GB
RAM.

2 The Dense Network Architecture

We first experimented with using different number of nodes in each layer, and whether
to use dropout layers for regulalization or not. We fixed the dropout rate to 0.5
(50%) as recommended in [11]. During those experiments the remaining architectural
parameters, number of layers and β are kept fixed to 2 and 18.0, respectively. The
result is depicted in Figure 4.1. By constrasting the left and right graphs we see
that with the number of training epocs (steps) the accuracy on the training data
continues to increase whereas it saturates quickly on the validation data, independent
from whether we use dropout (top graphs) or not (bottom graphs). This is a clear sign
of overfitting and it becomes increasingly profound as the number of neurons in each
layer increases. The dropout regularization seem to somewhat alleviate the overfitting
on the training data, as expected, although it does unfortunately not translate into
noticable better accuracy on the validation data. There seems to be no advantage in
using more than 50 neurons in each layer, and little to no advantage in using dropout
layers. Consequently, in further experiments with the dense architecture, for the sake
of simplicity we fix each layer to 50 neurons and do not use droput layers.

In the next set of hyper-parameter experiments we change the number of layers to
be either 2, 3, or 4. During those experiments the remaining architectural parameters,
number of nodes in each layer, use of dropout, and β are kept fixed to 50, False, and
18.0, respectively. The result is depicted in Figure 4.2. The performance of the neural
network is just about the same whether we use 2, 3 or 4 layers. We will go with the
simplest architecture, as before, and choose to use 2 layers in our final architecture.

Finally, we tune the β parameter which represents the stability boundary as de-
scribed in Equation 3.1. The value of β is given in centipawns, that is, a value of a

20 CHAPTER 4. RESULTS

Accuracy when tuning neurons for simple architecture

Figure 4.1: Accuracy on the training data vs validation accuracy from tuning the
number of neurons, while keeping layers fixed at 2 and β = 18.0. In the top graphs we
use dropout layers set at 0.5 for regularization and in the bottom graphs we have no
such regularization.

Accuracy when tuning layers for simple architecture

Figure 4.2: Accuracy on the training data vs validation accuracy from tuning the
number of layers, while keeping neurons fixed at 50 and β = 18.0.

pawn is fixed to 100. A value of β = 18 thus correspond to slighly less than one fifth
of a pawn. During those experiments the remaining architectural parameters, number

3. THE CONVOLUTIONAL NETWORK ARCHITECTURE 21

Accuracy when tuning β for simple architecture

Figure 4.3: Accuracy on the training data vs validation accuracy from tuning the beta
parameter, while keeping neurons fixed at 50 and layers fixed at 2.

of nodes in each layer, use of dropout, and number of layers are kept fixed to 50, False,
and 2, respectively. The results are shown in Figure 4.3. The value of β = 18.0 seems
to be the best of the values we experimented with. It is worth noting that lower levels
of β than 18.0 were also tested, and while they generally gave a slighty better accuracy,
they resulted in a significant decrease in the number of positions labelled as stable (see
Section 3 on the role of β is determining stable positions). We decided thus to fix
β = 18, as a compromise.

3 The Convolutional Network Architecture

We did a similar hyper-parameter tuning for the convolutional network architecture.
As dropout plays a much lesser role for regluarization in this architecture than the
previous one, we choose not to use dropout and did thus not test for that parameter.

Accuracy when tuning neurons for architecture with convolution

Figure 4.4: Accuracy on the training data vs validation accuracy from tuning the
number of neurons, while keeping layers fixed at 2 and β = 18.0.

22 CHAPTER 4. RESULTS

Figure 4.4 shows the result of using different number of neurons in each layer (we
tested only 50 and 100 neurons per layer). Here there is a clear advantage in using
more than 50 neurons per layer.

Accuracy when tuning layers for architecture with convolution

Figure 4.5: Accuracy on the training data vs validation accuracy from tuning the
number of layers, while keeping neurons fixed at 100 and β = 18.0.

Based on the results in Figure 4.5 we chose to use only 2 layers, that is, for both
the convolutional and non-convolutional sub-networks before they are concatenated.
Having 3 layers seems to just train slower with no obvious increase in accuracy. Sim-
ilarily, based on the experiments shown in Figure 4.6 we determine the most suitable
value of β to be 18, as before.

Accuracy when tuning β for architecture with convolution

Figure 4.6: Accuracy on the training data vs validation accuracy from tuning the β
parameter, while keeping neurons fixed at 100 and layers fixed at 2.

4 Comparing the Architectures
The most approprite hyper-parameters determined for the two architectures only dif-
fered in the number of neurons in each layer, that is, 50 and 100 neurons for the dense
and convolutional architectures, respectively. The other hyper-parameters were the

5. DISTINGUISING STABLE VS. NONSTABLE POSITIONS 23

same for both architectures, that is, no dropout, 2 layers, and β = 18. When contrast-
ing the accuracy achieved by the two architecture there is no difference, they both lie
between 72-73% percent validation accuracy. After choosing the best parameters, we
evaluate the accuracy on the test dataset, which yielded the same results. As before,
we chose the simpler model in such situations. All further experiments were thus done
using only the dense architecture.

5 Distinguising Stable vs. Nonstable Positions

Accuracy is only one possible metric to measure prediction effectiveness. It tells the
percentage of positions that the network correctly identifies as stable or not. The ac-
curacy our classifier recieves is between 72-73% and although better than an uniform
random guess, it would have less accuracy than a classifier that would always predict
that a position is unstable (the percentage of unstable positions in our β = 18 dataset
is approximately 77%). However, such a classifier would be totally useless for time
management as it would never stop the search prematurely. For our task, it is impor-
tant that we are able to distinguish between stable and non-stable positions. We thus
also looked at other metrics that are possibly more meaningful than accuracy for our
task, precision and recall.

Cumulative Gains and ROC curves allows us to have a holistic look at precision
and recall at the same time, as depicted in Figure 4.7. The graph to the left shows the
Cumulative Gains curve. The test data is ordered in a decreasing order by prediction of
the dense network along the x-axis, whereas the y-axis shows the percentage of stable
positions correctly identified so far. As you can see on the Cumulative Gains curve, by
looking at only 20% of the data we already identify almost 40% of the stable positions,
where a random baseline model would only get 20%. The recall of our model is thus
substantially better than random, however, it still has a long way to go compared to
a perfect model, which would have identified around 70% of all stable positions by
that point. The ROC curve to the right provides an alternative view where the false-
postive-rate (FPR), on the x-axis, and the true-positive-rate (TPR), on the y-axis, are
contrasted as the discriminating threshold of the classifier is varied. The area under
the curve for our classifier is 0.71 for predicting both stable and unstable positions,
which again is substantially better than random.

We can also use the ROC curve to determine an appropriate value for the threshold
parameter used in Algorithm 2. Essentially, we want to choose a value for the param-
eter such that it has a very low FPR, while still having a relatively high TPR when
predicting whether a position is stable. We can achieve a low FPR by choosing a some-
what high threshold, but if too high the networks’s prediction as used in our algorithm
would only kick in too infrequently and thus any measurable effect.

Table 4.1 shows a zoomed-in view of the lower-left corner of the ROC curve. Based
on the table we chose the threshold to be 0.76, which identifies slightly over 6% of
the stable positions while only being wrong in 0.5% of the cases. This seems like an
acceptable tradeoff between FPR and TPR because the consequences of unnecesarily
searching a stable positions deep are potentially much less severe than not searching
an unstable position to a full depth. This is because the former mistake results only
in spending too much time on a given position, while the other problem could result
in a suboptimal move or even a game-losing blunder.

24 CHAPTER 4. RESULTS

Figure 4.7: On the left side we have a Cumulative Gains curve, which shows how well
our model does at signifying correctly that Stockfish should stop searching. The blue
line shows an ideal model which always outputs correctly and the baseline shows how
well a random model would do on average. Our model is on the orange line and clearly
has a significant advantage over a random output. On the right side we have the ROC
curve, which plots the false positive rate against the true positive rate. Our area under
the curve is 0.71, while an ideal area would be 1.0.

Table 4.1: Table data for the ROC curve for stability, sorted by FPR.

FPR TPR Threshold
0.1% 2.11% 0.93
0.2% 3.25% 0.875
0.3% 4.28% 0.829
0.4% 5.18% 0.789
0.5% 6.02% 0.762
0.6% 6.52% 0.738
0.7% 7.09% 0.713
0.8% 7.73% 0.692
0.9% 8.21% 0.674
1.0% 8.69% 0.658
1.1% 9.06% 0.644
1.2% 9.44% 0.633
1.3% 9.72% 0.624
1.4% 10.15% 0.613
1.5% 10.48% 0.605
1.6% 10.86% 0.597
1.7% 11.27% 0.589
1.8% 11.58% 0.582
1.9% 11.92% 0.576

6 Testing in Gameplay

Having chosen the architecture, hyper-parameters, and the discrimination threshold
for our neural network, we have all the information needed to test Algorithm 2 in
practice.

7. SUMMARY 25

We matched a version of Stockfish using a fixed iteration-depth of 7 against two
versions of Stockfish that selectively choose between either depth 6 and 7. The for-
mer verion uses the prediction of stableness of our feed-worward neural network to
determine if to stop searching after iteration-depth 6 (the network has 2 layers of
50 neurons each, trained without dropout layers, and using training/testing data la-
belled using β = 18). The latter verion, used as a baseline, randomly chooses between
iteration-depth 6 or 7 with the same frequency as the former version.

The full-iteration-depth version played a match consisting of over 1000 games
against each of the two selective iteration-depth versions. The result is best summa-
rized as both the selective versions did slightly worse against the full-depth player, as
expected, however, somewhat dissapointingly, there was not a statistically meaningful
difference betweeen the performance of the two selective versions.

7 Summary
We conclude that although our neural-network classifier is able to discriminate between
stable and unstable positions substantially better than random (with respect to recall),
it is nonetheless not accurate enough for that benefit to transfer into actual game play.

26

27

Part II

Depth Reduction

Chapter 5

Methods

The Stockfish chess program uses a traditional mini-max-based game-tree search for
planning. Additionally, it employs numerous state-of-the-art algorithmic search en-
hancements, such as iterative-deepening [20], alpha-beta cutoffs [6], Negascout/PVS [8]
[9], transposition table, singular-extensions [21], move-ordering, and more. In particu-
lar, it uses a quite aggressive forward-pruning mechanism, which is based primarily on
null-move-search [22] and late-move-reductions [1]. Instead of searching all branches in
the search tree to full depth, forward-pruning may choose to terminate some branches
prematurely, that is, search them to less depth if they are deemed unlikely to yield a
better result. In this part of the project, we experiment with tuning the main set of
depth-reduction parameters used for the late-move-reduction forward-pruning scheme
in Stockfish.

1 Late-Move-Reductions in Stockfish

Algorithm 3 gives a high-level overview of how late-move-reductions are performed
in Stockfish. We only show the core functionality of the scheme, with just enough
details to clarify the following dicussion. We refer interested readers to the code-base
for further details.

The algorithm shows a recursive alpha-beta-based search (a variant named Ne-
gaScout, to be more specific). Most of the code is standard for chess game-playing
programs, for example, terminating the recursions with quiescence search (lines 1-4),
initializing and looping through available moves (the while loop in lines 7-36), making
and unmaking moves (lines, 12 and 25, respectively), updating bounds and best value
found so far (lines 26-35). The code specific to late-move-reduction is in lines 13-20.
Essentially, if the current position is deemed suitable for a reduced search (e.g., a quiet
move which is not the first move in the movelist), a search with a reduced search depth
is first tried, and only if it fails-high, is the move searched again, but now to a full
depth.

At each internal node, the movelist is ordered such that perceived promising moves
are searched before the less promising ones. The later a move is in the movelist, the less
likely it is to yield an improvement, and under certain non-threat conditions, it may
be searched to less than the original intended depth. The depth-reduction equation
used in the standard version of Stockfish is a function of both the remaining search
depth and the location of the move in the movelist, and grows logarithmically and
symmetrically with its two arguments, as shown below (Equation 2.1 replicated here

30 CHAPTER 5. METHODS

Algorithm 3: Overview of search code
Input : pos, alpha, beta

1 if depth < 1 then
2 // do quiescence-search and evaluate pos
3 return qsearch(pos, alpha, beta)
4 end
5 best_value = -VALUE_INFINITE
6 move_count = 0;
7 while move = next_move(pos) do
8 move_count += 1 // keep track of number of moves
9 // Apply search extensions if applicable (e.g. in check)

10 new_depth = depth - 1 + extension
11 // Search recursively, either shallow-depth, full-depth, or both.
12 do_move(move)
13 if do_reduced_search(pos, new_depth, alpha, beta, move_count) then
14 Depth r = reduction(depth, move_count)
15 value = -search(pos, -(alpha+1), -alpha, new_depth - r)
16 if value > alpha then
17 // fail-high, do full-depth search.
18 value = -search(pos, -(alpha+1), -alpha, new_depth)
19 end
20 end
21 else
22 // do only full-depth search
23 value = -search(pos, -(alpha+1), -alpha, new_depth
24 end
25 undo_move(move)
26 // Record best value (move) found so-far.
27 if value > best_value then
28 best_value = value
29 if value > alpha then
30 alpha = value
31 if value >= beta then
32 break
33 end
34 end
35 end
36 end
37 return best_value

from Section 2 for convenience):

r =

⌊
1

1.95
log(d) log(m)

⌋
(5.1)

Figure 5.1 depicts the reduction using a heat-map.
Our hypothesis is that a more sophisticated and, in particular, non-symmetrical

(w.r.t. depth and move locations) depth-reduction scheme might potentially be more

2. GATHERING AND LABELLING THE DATA 31

Depth

M
ov
e
N
um

be
r

Figure 5.1: Visual map of depth reduction using equation 5.1.

effective, that is, an equation taking the general form:

r = bA log(d) log(m) +B log(d) + C log(m) +D |α− s|+ Emc (5.2)

where A,B,C,D,E are constants, |α− s| is the absolute difference between the α
value and the static evaluation at root and m is the material difference between the
two players (black and white). The most appropriate constants in the above equation
can be determined using a regression model. In the next subsection we desribe the
process for gathering the training data for the regression.

2 Gathering and Labelling the Data

To look for a more effective depth-reduction mechanism than Equation 5.1, we need to
investigate the relatioship between the game state and allowable reduction in search
depth. If we gather enough data about game states and label them with the allowable
search reduction, we can use regression methods on that data to parameterize a given
candidate search reduction formula. We can then run a match to test how well the
new candidate reduction formula performs compared to the original.

We start by running a match between two instances of Stockfish and periodically
log out the following variables: FEN notation, search depth, move number, α and
material value for white and black. To make sure that the data would include different
games, we created a set of 696 opening positions. These positions were made from the
position after 6 moves from two different databases of games, one from a set of games
played by Magnus Carlsen and one from a set of games from online players. See how
these opening positions were created in the appendix at A.1.

After gathering data from different search states we programmatically analyze the
search outcome at maximum depth for each unique FEN in the data and calculate the
maximum possible depth reduction before the search outcome changes from a fail-low
to a fail-high. See table 5.1 for an illustration. We only considered states where the
result of the full search agrees with the reduced search depth and we only focused on
cases where the search resulted in a fail low. The code used for labelling can be seen
in the appendix at A.3.

32 CHAPTER 5. METHODS

Table 5.1: The upper limit of allowable reduction in search depth is 11−3 = 8, because
the search outcome does not change from depth 3 to depth 11.

depth value (CP) <= 100

1 99.7 True (Fail-Low)

2 109.1 False (Fail-High)

3 99.9 True (Fail-Low)

...

8 99.4 True (Fail-Low)

9 99.3 True (Fail-Low)

10 97.2 True (Fail-Low)

11 96.5 True (Fail-Low)

Depth 8

3 Regression and Normalizing

After labelling we run linear regression to determine the best parameters for Equa-
tion 5.2. As some of the parameters seemed to be of a little consequence, we also fitted
various other more simplifed forms of the equation (discussed later).

The depth-reductions resulting from the regression model are far more aggressive
than the original depth-reductions used by Stockfish. This is unsurprising, and simply
an artifact of how we gather the training data, where we compute the most appropriate
intermediate reduction for each depth/move locations. In practice, this implies that
sometimes we reduce too much and sometimes too little. However, the consequences of
reducing the depth too aggressively are much more severe and can lead to an immediate
loss (as opposed to only some unnecessary search overhead). What we want to do is to
renormalize the depth-reductions such that the total number of nodes searched under
the new scheme is approximately the same as in the old. The search trees explored
will though have radically different shape.

To ensure that the newly found formula doesn’t reduce the depth too aggressively,
we use the built-in benchmarking program in Stockfish which counts the number of
nodes searched when evaluating a certain set of positions. The total sum of nodes
searched is used internally by Stockfish to decide whether it is worth it at all to
consider running your changes inside FishTest. We use this benchmarking tool as a
way of normalizing our equation. We find a scaling factor for our formula which gives a
similar total number of nodes searched in the benchmark as in the unmodified version
of Stockfish.

In order to ensure that we are not comparing apples to oranges, we made sure to
always use the same Stockfish executable (just configured to use a different reduction
equation at runtime) when we run the benchmarking tool. This ensures that any dif-

4. MATCHES AGAINST THE ORIGINAL STOCKFISH 33

ferences seen in the number of nodes searched happens only because of our choice of
equation and not due to differences in optimization levels in the compiler or other code
changes. We made simple modifications to Stockfish which allow us to modify the re-
duction equation at runtime, rather than recompiling the program. The modifications
can be seen in the appendix at A.4.

4 Matches against the original Stockfish
Finally, we ran matches where we match the original Stockfish chess program against
modifed counterparts, each using a search-reduction equation from the different re-
gression models. The overall match performance is the ultimate test of how good each
regression model is in practice.

34

Chapter 6

Results

In this chapter we show the results from using the regression-based approach to tuning
the depth-reduction function in Stockfish. We used the cute-chess [23] program for
managing all the matches.

1 Gathering and Labelling the Data

In order to obtain log records, we ran a match between Stockfish and itself with time
controls of 3 min and 2 seconds (increment), logging down statistics in some of the
nodes during LMR search. We logged only a small fraction of the nodes searched and
mostly at depths in the range 1-10 and move number in the same range (the exact
conditions can be seen in the function do_log in A.2 in the Appendix). We used only
the logs from the search which resulted in a fail-low (around 82% of the logs), since
this is the expected outcome in LMR search.

We labelled roughly 100,000 log records from 100 different games before applying
linear regression. The maximum depth reduction as described in table 5.1 was on
average 3.37, while the full depth which would have been searched through was on
average 4.55.

2 Regression and Normalizing

Table 6.1 shows the results of the regression. The score on the right is calculated using
the coefficient of determination, R2, and the simplest formula with the best fitting
score is chosen. Note that even though two formulas have an R2 score of roughly 0.8,
the latter one has two extra terms which do not seem to contribute significantly to the
score. As a result, the following equation was chosen:

2.3988log(d) ∗ log(m) + 2.12698 ∗ log(d)− 4.64504 ∗ log(m) (6.1)

Other parameters that were tested with regression, such asm and |α−S|, were dropped
since they apparently do not have noteworthy relations with the depth reduction (as
one can see in Table 6.1, those two terms are always given a weight of zero).

As noted in the previous chapter, the depth-reductions resulting from the regression
model are far more aggressive then the original depth-reductions used by Stockfish (an
artifact of how we gather the training data). We thus renormalize the depth-reduction
such that the total number of nodes search under the regression result based scheme

36 CHAPTER 6. RESULTS

Formula R2 Score

1.0915 ∗ log(d) ∗ log(m) 0.3588

2.0351 ∗ log(d) 0.4157

1.8865 ∗ log(m) 0.0105

0.000110438 ∗ |α− S| -1.6759

0.000981318 ∗md -1.7541

0.3761 ∗ log(d) ∗ log(m) + 1.3697log(d) 0.4352

3.1016log(d) ∗ log(m)− 3.8611log(m) 0.6274

2.3988log(d) ∗ log(m) + 2.1270 ∗ log(d)− 4.6450 ∗ log(m) 0.8005

1.0867 ∗ logd ∗ logm + 8.4988e− 06|α− S| 0.3595

1.0897 ∗ logd ∗ logm + 7.0620e− 05md 0.3591

1.0856 ∗ logd ∗ logm + 7.9740e− 06|α− S|+ 5.6869e− 05md 0.3597

0.0001|α− S|+ 0.0008md -1.6441

2.39log(d)log(m) + 2.14log(d)− 4.64log(m)− 3.78e−6|α− S| − 2.5e−5md 0.8007

Table 6.1: Regression attempts using different terms in the equation. Note that some
of the R2 scores are negative, implying that the formula found through regression is a
worse fit through the data than a horizontal line.

2. REGRESSION AND NORMALIZING 37

Figure 6.1: The difference in number of nodes searched between Stockfish using the
modified equation and the original Stockfish is shown on the y-axis. The scale factor
used on the equation found through regression is on the x-axis. The smaller the scaling
factor, the lesser the reduction parameter will be and thus Stockfish will search through
a greater amount of nodes.

is approimately the same as in the original one. Although the total node count will be
approximately the same, the search trees explored will have radically different shape.

One can see the ratio between the number of nodes searched when using Equations
5.1 and 6.1 in Figure 6.1. One sees that the ratio starts approaching 1 as the scaling
factor increases. We ended up choose a scaling factor of 0.40596, which results in the
following equation (after scaling):

r = b0.9738log(d) ∗ log(m) + 0.8635log(d)− 1.8857log(m)c (6.2)

The number of nodes searched in the benchmark for this equation was 3, 756, 481
while the original gives 3, 789, 679, which is only 1.0% higher. Using this new equa-
tion we also got the same best move as with the original equation only 76% of the
time, indicating that the search is radically different although the total search effort is
similar. Also, in Figure 6.2, the depth-reduction is depicted as a heat-map, and differ
significantly from the original one (see Figure 5.1). For example, the new equation
seems to put little emphasis on the move number until one reaches a depth of 5.

38 CHAPTER 6. RESULTS

Depth

M
ov
e
N
um

be
r

Figure 6.2: Visual map of depth reduction using the new equation.

3 Match Results

In the below tables, A, B and C refer to the constants in Equation 5.2. For match
results, a score like 686.5/705.5 means that the sum of wins and draws for the original
Stockfish was 705.5 and 686.5 for the modified Stockfish (a win adds 1 to the sum and
a draw adds 0.5). TC stands for time control.

The following matches were run on Garpur, except for one experiment which was
run on FishTest. The number of wins and losses are shown along with win percentage.

A B C W/L with TC 10s+ 0.01s W/L with TC 3m+ 2s

0.9738 0.8635 -1.8857 637.5/754.5 (45.8%) 39.5/53.5 (42.5%)

4 Other Experiments

Finally, we did a few other experiments with the reduction equation. Some of the more
interesting ones are depicted below.

4.1 Hand-Picked Parameters

We tried a few parameterizations of equation 5.2 by hand based on insight gained
from reading into the heatmaps and previous game results. We ran one of the better
ones found through that method on FishTest. We first ran a match using a regression
formula with the following parameters on the Garpur cluster:

4. OTHER EXPERIMENTS 39

A B C W/L with TC 10s+ 0.01s W/L with TC 3m+ 2s

0.1 0.5 0 654.0/738.0 (47%) 56.0/58.0 (49%)

Since this formula gave a promising win ratio with a longer time control we decided
to try it on FishTest and got these results: [24]

Played on Wins/Losses with TC 10s + 0.1s p-value

25 computers 1339.5 / 1491.5 (47.3 %) 92.64%

Note that FishTest only used a short time control, while our own tests used both
a long and short time control. The reason for this is that FishTest finishes early if the
p-value reaches a certain threshold and doesn’t move on to the next stage.

4.2 Grid Search

We ran a grid based parameter search using the first three terms of equation 5.2 using
the above mentioned Stockfish benchmark tool as an evaluation function. We ran
matches against the original Stockfish using the best parameters found in the grid
search. Below are the match results based on those parameters.

A B C Wins/Losses with TC 10s+ 0.01s Wins/Losses with TC 3m+ 2s

0.23 0.1 0.45 489.5/902.5 (35%) 92.5/140.5 (40%)

0.32 0.18 0.1 680.0/712.0 (48.9%) 110.5/121.5 (47.6%)

0.32 0.27 0.14 686.5/705.5 (49.3%) 106.0/125.0 (45.8%)

0.23 0.32 0.14 671.5/720.5 48.2% 113.5/114.5 (49.8%)

0.14 0.5 0.18 672.5/719.5 (48.3%) 113.5/118.5 (48.9%)

0.27 0.14 0.27 687.5/704.5 (49.4%) 107.0/119.0 (47.3%)

4.3 Non-linear Modifications

Based on the results from the previous experiments we also ran a match using a non-
linear modification of the search reduction formula:

r =

⌊
1

1.95
log(2d) log(m/2)

⌋
(6.3)

The difference between equation 6.3 and 5.1 is that the depth and move number
have been scaled differently. We modified Stockfish in a similar way as before to
support this new version of the search reduction formula, as can be seen in A.5.

40 CHAPTER 6. RESULTS

Depth

M
ov
e
N
um

be
r

Figure 6.3: Visual map of depth reduction using equation 6.3

Match results using this nonlinear modification can be seen below.. A visual map
of this equation can be seen in figure 6.3. The performance of this equation seems
quite similar to the original.

Wins/Losses with TC 10s+ 0.01s Wins/Losses with TC 3m+ 2s

698.5/693.50 (50%) 41.0/41.0 (50%)

5 Summary
To summarize, we made modifications to the depth reduction method in Stockfish.
We found alternative formulas to the one used by Stockfish using various methods,
most notably linear regression with normalization based on benchmarking. Despite
our efforts, we did not manage to improve the performance of Stockfish with these
alternative depth reduction formulas. This is maybe not surprising, given that the
current search-reduction parameters in Stockfish are based on careful tuning and ex-
tensive gameplay evaluation.

41

Part III

Conclusion and Future Work

Chapter 7

Conclusions and Future Work

The time-mangement experiments did show some promise in discriminating between
stable vs. unstable chess positions, although ultimately it did not help with time man-
agement. There are other potential uses in the chess program for such a classification,
for example in the quiescence search, although we did not experiment with them.

As for the depth reductions, despite our efforts, we did not manage to improve
the search in the Stockfish chess engine. The Stockfish engine is more than a decade
old and includes a lot of tuneable parameters that have been modified and optimized,
mainly though extensive tournament play. FishTest runs dozens of tournaments on
hundreds of computers every single day, but most of the improvements tested in these
tournaments will not make it into the engine. Thus it is in itself not surprising that
we did not manage to improve the engine.

As for future work, we believe that there is still some potential scope for improving
Stockfish through machine learning. For example, in retrospect, we suspect that our
data-gathering mechanism might not have resulted in the ideal ground-truth data.
Similarly, we believe that tuning β as an hyper-parameter with respect to accuracy
was not the best suited approach for data labeling. Instead it might have been better
to manually determine β using domain (chess expert) knowledge. For example, given
better such data one might for example try more sophisticated regression methods, e.g.
non-linear ones. Another possibility would be to avoid altogether having to generate
labeled ground-truth data, and instead use reinforement learning in an unsupervised
fashion. However, such an approach would likely require quite extensive computing
resources.

44

Bibliography

[1] Stockfish homepage, https://stockfishchess.org/.

[2] O. E. David, N. S. Netanyahu, and L. Wolf, “Deepchess: End-to-end deep neural
network for automatic learning in chess”, in International Conference on Artifi-
cial Neural Networks, Springer, 2016, pp. 88–96.

[3] M. Lai, “Giraffe: Using deep reinforcement learning to play chess”, arXiv preprint
arXiv:1509.01549, 2015.

[4] D. Silver, et al ..., and D. Hassabis, “Mastering chess and shogi by self-play with
a general reinforcement learning algorithm”, arXiv, Dec. 2017.

[5] AlphaZero chess: Reactions from top gms, stockfish author, https://www.chess.
com/news/view/alphazero-reactions-from-top-gms-stockfish-author.

[6] D. Knuth and R. Moore, “An analysis of alpha-beta pruning”, Artificial Intelli-
gence, vol. 6, pp. 293–326, 1975.

[7] Tic-tac-toe game tree image from wikipedia, https://en.wikipedia.org/wiki/
Game_tree#/media/File:Tic-tac-toe-game-tree.svg, License CC BY-SA
3.0.

[8] A. Reinefeld, “An improvement of the scout tree search algorithm”, ICCA Jour-
nal, vol. 6, no. 4, pp. 4–14, 1983.

[9] T. A. Marsland, “Relative efficiency of alpha-beta implementations”, A. Bundy,
Ed., Karlsruhe, FRG: William Kaufmann, Aug. 1983, pp. 763–766, isbn: 0-
86576-064-0.

[10] B. C. Csáji, “Approximation with artificial neural networks”, Faculty of Sciences,
Etvs Lornd University, Hungary, vol. 24, p. 48, 2001.

[11] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-
nov, “Improving neural networks by preventing co-adaptation of feature detec-
tors”, arXiv preprint arXiv:1207.0580, 2012.

[12] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift”, arXiv preprint arXiv:1502.03167, 2015.

[13] Keras homepage, https://keras.io/.

[14] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess and shogi
by self-play with a general reinforcement learning algorithm”, arXiv preprint
arXiv:1712.01815, 2017.

[15] Site where you can download pgn files with games from the fics chess game server,
https://www.ficsgames.org/download.html.

https://stockfishchess.org/
https://www.chess.com/news/view/alphazero-reactions-from-top-gms-stockfish-author
https://www.chess.com/news/view/alphazero-reactions-from-top-gms-stockfish-author
https://en.wikipedia.org/wiki/Game_tree#/media/File:Tic-tac-toe-game-tree.svg
https://en.wikipedia.org/wiki/Game_tree#/media/File:Tic-tac-toe-game-tree.svg
https://keras.io/
https://www.ficsgames.org/download.html

46 BIBLIOGRAPHY

[16] Site where you can download pgn files with games by various famous chess play-
ers, https://www.pgnmentor.com/files.html#players.

[17] python-chess library, https://github.com/niklasf/python-chess.

[18] Tensorflow homepage, https://www.tensorflow.org/.

[19] Garpur homepage, https://ihpc.is/garpur/.

[20] D. J. Slate and L. R. Atkin, “CHESS 4.5—The Northwestern University chess
program”, in Chess Skill in Man and Machine, P. W. Frey, Ed., Berlin: Springer-
Verlag, 1977, pp. 82–118.

[21] T. Anantharaman, M. S. Campbell, and F.-h. Hsu, “Singular extensions: Adding
selectivity to brute-force searching”, Artificial Intelligence, vol. 43, no. 1, pp. 99–
109, 1990.

[22] D. Beal, “Experiments with the null move”, in Advances in Computer Chess 5,
D. Beal, Ed., 1989, pp. 65–79.

[23] Cute-Chess homepage, https://github.com/cutechess/cutechess.

[24] Fish Test results, https://web.archive.org/web/20191019104856/http:
/ / tests . stockfishchess . org / tests / view / 5d148c7a0ebc5925cf0b4255,
Ran on: 2019-06-27.

https://www.pgnmentor.com/files.html#players
https://github.com/niklasf/python-chess
https://www.tensorflow.org/
https://ihpc.is/garpur/
https://github.com/cutechess/cutechess
https://web.archive.org/web/20191019104856/http://tests.stockfishchess.org/tests/view/5d148c7a0ebc5925cf0b4255
https://web.archive.org/web/20191019104856/http://tests.stockfishchess.org/tests/view/5d148c7a0ebc5925cf0b4255

Appendix A

Code

1 Logging code

1.1 Opening positions

The below python script was used to create a set of unique opening positions. Using
this increases the chance that the chess games will be unique.

Listing A.1: Create a set of opening positions
1 import chess.pgn

3 files = [open(’./datasets/Carlsen.pgn’,’r’), open(’./datasets/AepliBase.pgn’,’r’)]

5 openingFens = set()

7 for f in files:
games = 0

9 game = chess.pgn.read_game(f)
while(game and games < 10000):

11 board = chess.Board()
m = 0

13 for move in game.mainline_moves():
board.push(move)

15 m += 1
if m == 6:

17 break

19 fen = board.fen().split(’␣’)
openingFens.add(’␣’.join(fen[0:4] + [’0␣0’]))

21

game = chess.pgn.read_game(f)
23 games += 1

25 for fen in openingFens:
print(f’[Event␣"Dummy␣Data"]’)

27 print(f’[Site␣"Reykjavik,␣Iceland"]’)
print(f’[Date:␣"??"]’)

48 APPENDIX A. CODE

29 print(f’[White:␣"White,␣Mx."]’)
print(f’[Black:␣"Black,␣Mx."]’)

31 print(f’[Result:␣∗]’)
print(f’[SetUp␣1]’)

33 print(f’[FEN␣"{fen}"]’)
print()

1.2 Logger

The below code was used when logging out state variables in StockFish.

Listing A.2: Search logging
1 #include <fstream>
2 #include <string>

4 class Record {
public:

6 Record(const std::string &fen,
bool pv, bool improving, int d, int m,

8 int nd, int r_org, int r, int ds, int alpha, int value, int ply,
int gply, int npw, int npb, int np, int seval)

10 : fen_(fen),
pv_(pv), improving_(improving), depth_(d), move_no_(m),

12 depth_new_(nd), reduction_org_(r), reduction_(r_org), ←↩
↪→depth_searched_(ds), alpha_(alpha), value_(value),

ply_(ply), game_ply_(gply),
14 np_material_w_(npw), np_material_b_(npb), np_material_(np), ←↩

↪→stat_eval(seval) {
}

16

const std::string fen_;
18

bool pv_;
20 bool improving_;

int depth_;
22 int move_no_;

24 int depth_new_;
int reduction_org_;

26 int reduction_;
int depth_searched_;

28 int alpha_;
int value_;

30

int ply_;
32 int game_ply_;

34 int np_material_w_;

1. LOGGING CODE 49

int np_material_b_;
36 int np_material_;

38 int stat_eval;
};

40

42 class Logger {
public:

44

const char delim = ’:’;
46

Logger() {
48 }

50 ~Logger() {
f_.close();

52 }

54 void open(std::string name) {
#ifdef DEBUG_YB_LOG

56 sync_cout << "info␣string␣debug␣opening␣file:␣" << name << sync_endl←↩
↪→;

#endif
58 f_.open(name);

ready = true;
60 }

62 bool do_log(int d, int m) {
// return true;

64 return in_range(d) && in_range(m) && (rand() % 2048 == 0);
}

66

void add_to_log(const Record &rec) {
68 if (!ready) {

open(Options["YBLogFile"]);
70 }

f_ << rec.fen_ << delim
72

<< rec.pv_ << delim
74 << rec.improving_ << delim

<< rec.depth_ << delim
76 << rec.move_no_ << delim

78 << rec.depth_new_ << delim
<< rec.reduction_ << delim

80 << rec.reduction_org_ << delim
<< rec.depth_searched_ << delim

82 << rec.alpha_ << delim

50 APPENDIX A. CODE

<< rec.value_ << delim
84

<< rec.ply_ << delim
86 << rec.game_ply_ << delim

88 << rec.np_material_w_ << delim
<< rec.np_material_b_ << delim

90 << rec.np_material_ << delim
<< rec.stat_eval << ’\n’;

92 if (count % 5 == 0) {
f_ << std::flush;

94 }
count++;

96 }

98 private:
bool ready = false;

100

bool in_range(int n) {
102 return (n <= 10) ||

(n <= 30 && n % 5 == 0) ||
104 (n <= 60 && n % 10 == 0);

}
106

std::ofstream f_;
108 int count = 0;

110 };

2 Labelling code
The below code was used to label the data gathered from StockFish tree search.

Listing A.3: Label the data
1

2 #!/usr/bin/env python
−∗− coding: utf−8 −∗−

4

import asyncio
6 import time

import argparse
8 import itertools

import logging
10 import sys

12 import chess
import chess.engine

14 import chess.variant

2. LABELLING CODE 51

16 import multiprocessing as mp

18 async def test_pos(engine, board, depth, scores, moves):
limit = chess.engine.Limit(depth=depth)

20 with await engine.analysis(board,limit) as analysis:
async for info in analysis:

22 #print(info.get("score"), info.get("pv"))
if info.get("score") != None:

24 try:
scores.append(−info.get("score").relative.score())

26 moves.append(info.get("pv")[0].uci())
except TypeError:

28 return False
return True

30

def depth_reduction(alpha, scores, moves):
32 for d in range(len(scores)−1,0,−1):

if scores[d] > alpha:
34 return d

return 1
36

def init_worker(args):
38 global engine

40 loop = asyncio.get_event_loop()
_, engine = loop.run_until_complete(chess.engine.popen_uci(args.uci,))

42 engine.configure({
’Threads’: 1

44 })

46 def close_worker(w):
global engine

48

loop = asyncio.get_event_loop()
50 loop.run_until_complete(engine.quit())

52 def do_processing(lines):
global engine

54 # print(’do_processing’)
results = []

56

for line in lines:
58 fields = line.strip().split(’:’)

print(fields[0])
60 board = chess.Board(fields[0])

depth_full = int(fields[5])
62 reduction_org = int(fields[6])

depth_searched = int(fields[8])

52 APPENDIX A. CODE

64 alpha = int(fields[9])
value = int(fields[10])

66 # print(board)
print(depth_full, depth_searched, alpha, value)

68 scores = []
moves = []

70 if depth_full > 30: continue
loop = asyncio.get_event_loop()

72 ok = loop.run_until_complete(test_pos(engine, board, depth_full, scores←↩
↪→, moves))

if ok:
74 if scores[depth_searched − 1] <= alpha:

if scores[depth_full − 1] <= alpha:
76 ok = "1"

else:
78 ok = "0"

r = depth_full − 1
80 for d in range(depth_full, 0, −1):

if scores[d − 1] > alpha:
82 r = depth_full − d

break
84 r_per = r / depth_full

scores = [str(x) for x in scores]
86 results.append(’:’.join(fields+scores+moves+[str(round(r_per,6)←↩

↪→), str(r),ok])+’\n’)

88 return results

90

chunks = 100
92

from itertools import islice
94

def split_every(n, iterable):
96 i = iter(iterable)

piece = list(islice(i, n))
98 while piece:

yield piece
100 piece = list(islice(i, n))

102 def main():
Parse command line arguments.

104 parser = argparse.ArgumentParser(description=__doc__)

106 engine_group = parser.add_mutually_exclusive_group(required=True)
engine_group.add_argument("−u", "−−uci",

108 help="The␣UCI␣engine␣under␣test.")
parser.add_argument("−d", "−−debug", action="store_true",

110 help="Show␣debug␣logs.")

3. STOCKFISH MODIFICATIONS 53

parser.add_argument(’−r’, ’−−recs’, required=True, help="Name␣of␣file␣←↩
↪→with␣the␣data␣records")

112

args = parser.parse_args()
114

Configure logger.
116 logging.basicConfig(level=logging.DEBUG if args.debug else logging.←↩

↪→WARNING)

118 # Open and configure engine.

120 with open("new.txt", "w") as wf:
with open(args.recs) as f:

122 cpus = 4 # mp.cpu_count()

124 with mp.Pool(cpus, init_worker, (args,)) as pool:
print(’wtf’)

126 results = pool.imap(do_processing, split_every(100, f))
for result in results:

128 if result == None: continue
wf.write(’’.join(result))

130 # print(’closing ...’)

132 pool.map(close_worker, range(cpus))
pool.close()

134 pool.join()
wf.flush()

136

138 if __name__ == "__main__":
main()

3 Stockfish modifications
Below are some of the modifications made to StockFish in order to support different
search reduction formulas.

3.1 First version

Listing A.4: Stockfish modifications for formula 5.2
1 // main.cpp

int main(int argc, char∗ argv[]) {
3 double d_m_factor = 1/1.95, d_factor = 0, m_factor = 0, y_intercept= 0;

5 if(argc >= 6 && strcmp(argv[1], "reduction_params") == 0) {
d_m_factor = std::stod(argv[2]);

7 d_factor = std::stod(argv[3]);

54 APPENDIX A. CODE

m_factor = std::stod(argv[4]);
9 y_intercept = std::stod(argv[5]);

argc −= 5;
11 char∗ arg0 = argv[0];

argv = std::next(argv, 5);
13 argv[0] = arg0;

}
15 std::cout << engine_info() << std::endl;

17 UCI::init(Options);
PSQT::init();

19 Bitboards::init();
Position::init();

21 Bitbases::init();
Endgames::init();

23 Search::init(d_m_factor, d_factor, m_factor, y_intercept);
Threads.set(Options["Threads"]);

25 Search::clear(); // After threads are up

27 UCI::loop(argc, argv);

29 Threads.set(0);
return 0;

31 }

33 // search.cpp
void Search::init(double d_m_factor, double d_factor, double m_factor, ←↩

↪→double y_intercept) {
35 for (int d = 0; d < 64; ++d) {

Reductions[d][0] = 0;
37 Reductions[d][1] = 0;

}
39 for (int m = 0; m < 64; ++m) {

Reductions[0][m] = 0;
41 Reductions[1][m] = 0;

}
43

//int d_term, m_term;
45 for (int d = 1; d < 64; ++d)

for (int m = 1; m < 64; ++m) {
47 Reductions[d][m] = std::max(int(1024 ∗ 1024 ∗ (

std::log(d)∗std::log(m)∗d_m_factor + std::log(d)∗d_factor + std←↩
↪→::log(m)∗m_factor + y_intercept)), 0);

49 }
}

3.2 Second version

3. STOCKFISH MODIFICATIONS 55

Listing A.5: Stockfish modifications for formula 6.3
1 // main.cpp
2 int main(int argc, char∗ argv[]) {

double d_m_factor = 1/1.95, d_factor = 0, m_factor = 0, y_intercept= 0;
4 int func_number = 0;

if(argc >= 5 && strcmp(argv[1], "reduction_func2") == 0) {
6 if(strcmp(argv[2], "default") != 0) {

d_m_factor = std::stod(argv[2]);
8 }

d_factor = std::stod(argv[3]);
10 m_factor = std::stod(argv[4]);

func_number = 1;
12 argc −= 4;

char∗ arg0 = argv[0];
14 argv = std::next(argv, 4);

argv[0] = arg0;
16 }

if(argc >= 6 && strcmp(argv[1], "reduction_params") == 0) {
18 d_m_factor = std::stod(argv[2]);

d_factor = std::stod(argv[3]);
20 m_factor = std::stod(argv[4]);

y_intercept = std::stod(argv[5]);
22 argc −= 5;

char∗ arg0 = argv[0];
24 argv = std::next(argv, 5);

argv[0] = arg0;
26 }

std::cout << engine_info() << std::endl;
28

UCI::init(Options);
30 PSQT::init();

Bitboards::init();
32 Position::init();

Bitbases::init();
34 Endgames::init();

Search::init(d_m_factor, d_factor, m_factor, y_intercept, func_number);
36 Threads.set(Options["Threads"]);

Search::clear(); // After threads are up
38

UCI::loop(argc, argv);
40

Threads.set(0);
42 return 0;

}
44

// search.cpp
46 void Search::init(double d_m_factor, double d_factor, double m_factor, ←↩

↪→double y_intercept, int func_number) {

56 APPENDIX A. CODE

for (int d = 0; d < 64; ++d) {
48 Reductions[d][0] = 0;

Reductions[d][1] = 0;
50 }

for (int m = 0; m < 64; ++m) {
52 Reductions[0][m] = 0;

Reductions[1][m] = 0;
54 }

56 for (int d = 1; d < 64; ++d)
for (int m = 1; m < 64; ++m) {

58 switch(func_number) {
case 1:

60 Reductions[d][m] = std::max(int(1024 ∗ 1024 ∗ (
std::log(d∗d_factor)∗std::log(m∗m_factor)∗d_m_factor)←↩

↪→), 0);
62 if(d == 10 && m == 10) {

sync_cout << "f1␣reductions:␣" << Reductions[d][m] ←↩
↪→<< sync_endl;

64 }
continue;

66 default:
Reductions[d][m] = std::max(int(1024 ∗ 1024 ∗ (

68 std::log(d)∗std::log(m)∗d_m_factor + std::log(d)∗←↩
↪→d_factor + std::log(m)∗m_factor + y_intercept)),←↩
↪→ 0);

if(d == 10 && m == 10) {
70 sync_cout << "f0␣reductions:␣" << Reductions[d][m] ←↩

↪→<< sync_endl;
}

72 continue;

74 }
}

76 }

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Introduction

	Background
	Chess Engines
	Chess State
	Evaluation Function
	Game Tree
	Tree Search
	Search Window
	Quiescence Search
	Search Depth Reduction

	FishTest
	Deep Neural Network

	Time Management
	Methods
	Deep Neural Clock
	Neural Network Architectures
	Training and Testing the Networks
	Evaluating the Networks

	Results
	Experimental Setup
	The Dense Network Architecture
	The Convolutional Network Architecture
	Comparing the Architectures
	Distinguising Stable vs. Nonstable Positions
	Testing in Gameplay
	Summary

	Depth Reduction
	Methods
	Late-Move-Reductions in Stockfish
	Gathering and Labelling the Data
	Regression and Normalizing
	Matches against the original Stockfish

	Results
	Gathering and Labelling the Data
	Regression and Normalizing
	Match Results
	Other Experiments
	Hand-Picked Parameters
	Grid Search
	Non-linear Modifications

	Summary

	 Conclusion and Future Work
	Conclusions and Future Work
	Bibliography
	Code
	Logging code
	Opening positions
	Logger

	Labelling code
	Stockfish modifications
	First version
	Second version

